| Titre : |
Elliptic partial differential equations of second order |
| Type de document : |
texte imprimé |
| Auteurs : |
David Gilbarg ; Neil S. Trudinger, Auteur |
| Editeur : |
Berlin ; London ; Cham : Springer |
| Année de publication : |
2001 |
| Collection : |
Classics in mathematics, ISSN 1431-0821 |
| Importance : |
XIII-513 p. |
| Format : |
24 cm |
| ISBN/ISSN/EAN : |
978-3-540-41160-4 |
| Note générale : |
Bibliogr. Index |
| Langues : |
Anglais (eng) |
| Mots-clés : |
Differential equations, Elliptic
Équations différentielles elliptiques |
| Index. décimale : |
517.911 Questions générales. Théorèmes d'existence. Théorèmes d'unicité. Différentiabilité des solutions |
| Résumé : |
This is a book of interest to any having to work with differential equations, either as a reference or as a book to learn from. The authors have taken trouble to make the treatment self-contained. It (is) suitable required reading for a PhD student. Although the material has been developed from lectures at Stanford, it has developed into an almost systematic coverage that is much longer than could be covered in a year's lectures |
| Note de contenu : |
- Linear Equations
Laplace's Equation
The Classical Maximum Principle
Poisson's Equation and the Newtonian Potential
Banach and Hilbert Spaces
- Quasilinear Equations
Maximum and Comparison Principles
Topological Fixed Point Theorems and Their Application
Equations in Two Variables
Hölder Estimates for the Gradient
Boundary Gradient Estimates
... |
Elliptic partial differential equations of second order [texte imprimé] / David Gilbarg ; Neil S. Trudinger, Auteur . - Berlin ; London ; Cham : Springer, 2001 . - XIII-513 p. ; 24 cm. - ( Classics in mathematics, ISSN 1431-0821) . ISBN : 978-3-540-41160-4 Bibliogr. Index Langues : Anglais ( eng)
| Mots-clés : |
Differential equations, Elliptic
Équations différentielles elliptiques |
| Index. décimale : |
517.911 Questions générales. Théorèmes d'existence. Théorèmes d'unicité. Différentiabilité des solutions |
| Résumé : |
This is a book of interest to any having to work with differential equations, either as a reference or as a book to learn from. The authors have taken trouble to make the treatment self-contained. It (is) suitable required reading for a PhD student. Although the material has been developed from lectures at Stanford, it has developed into an almost systematic coverage that is much longer than could be covered in a year's lectures |
| Note de contenu : |
- Linear Equations
Laplace's Equation
The Classical Maximum Principle
Poisson's Equation and the Newtonian Potential
Banach and Hilbert Spaces
- Quasilinear Equations
Maximum and Comparison Principles
Topological Fixed Point Theorems and Their Application
Equations in Two Variables
Hölder Estimates for the Gradient
Boundary Gradient Estimates
... |
|  |